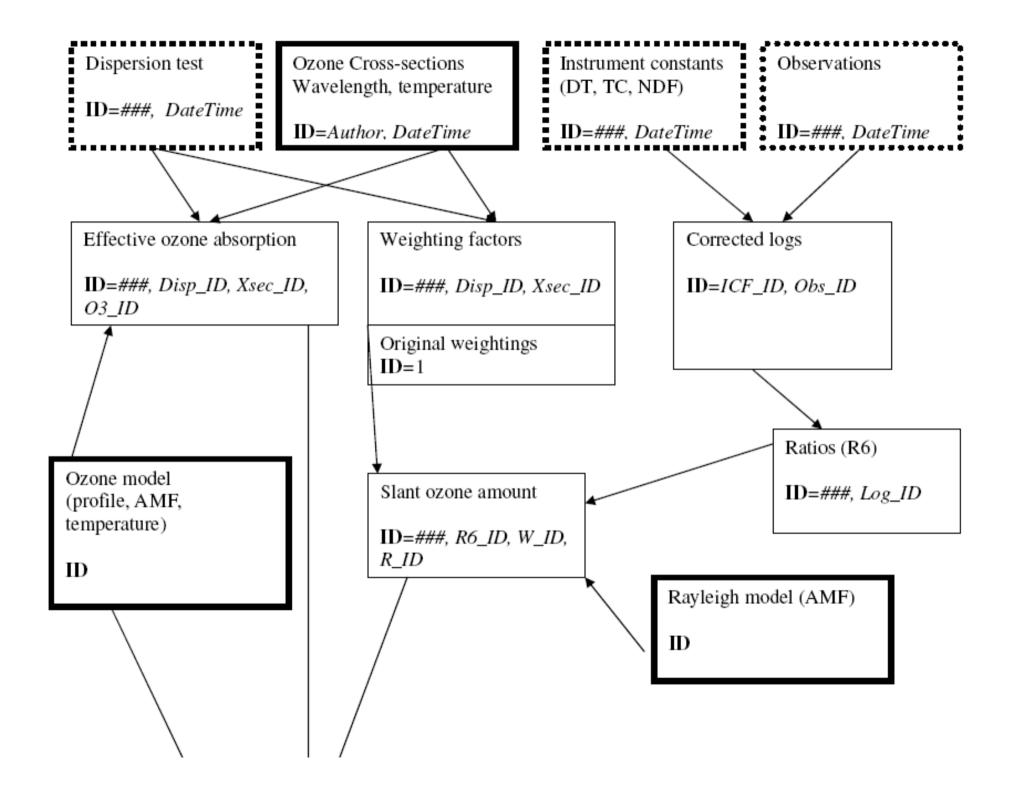

A database implementation of data analysis and quality control for the Brewer

Volodya Savastiouk

September 22, 2009 12th Brewer Workshop Valle d'Aosta, Italia

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.


Diagnostics

- How can we tell that a Brewer is OK?
 SL, DT, RS, HP, HG (UV?, DS?,...)
- Can we do diagnostics without additional software? Yes, but:
 - Difficulty with looking for historic data
 - Decision-making is primarily subjective
 - Time consuming when dealing with many Brewers

Ozone calculations

- Reprocessing starting as far back as possible
 Dispersion tests
 - Calibration data (co-located Brewers)
- Tracking the data versions

Implementation

Web-based applications on your PC

- Open-source software allows to run webbased applications on a single computer
- That same computer can be a server and database queries can be send via LAN or the Internet

Web-based applications on your PC

- Open-source software used:
 - Apache web-server
 - PHP interpreter
 - MySQL database engine
- The code is done in PHP
 - Scripting language allows to change the program quickly when needed

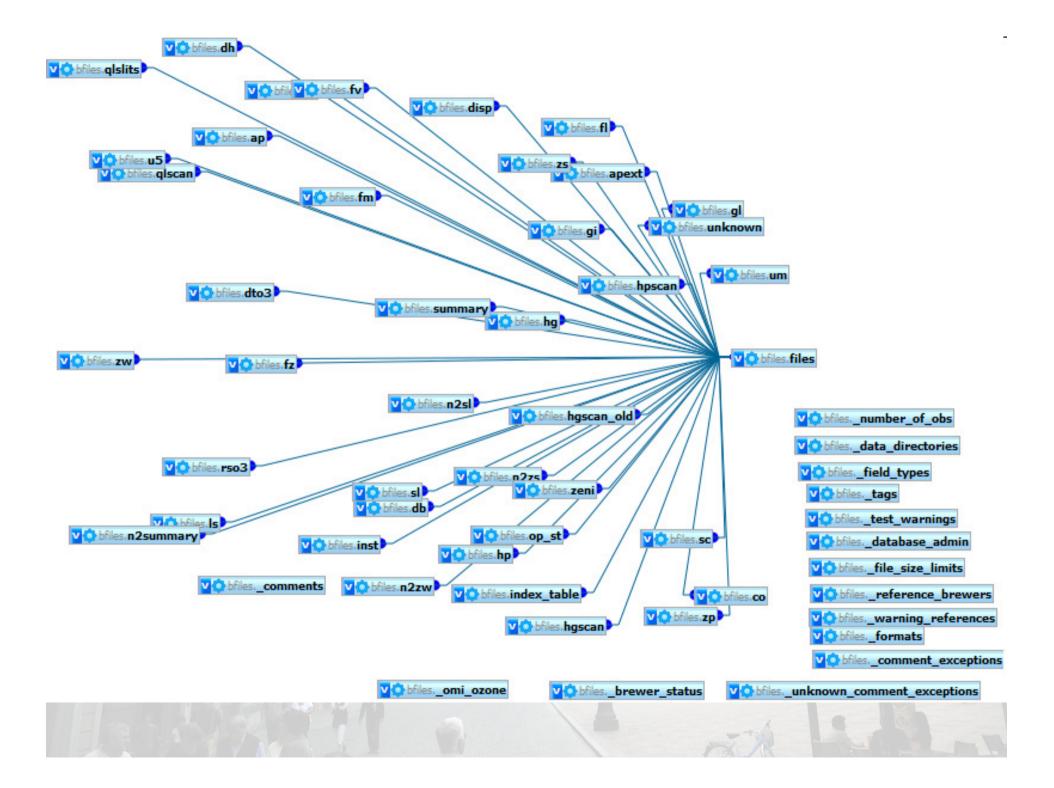
What has been done

- PHP code fully separated from the data: it is abstract, i.e. the program doesn't know what it is reading. It gets the formatting information from the database.
 - Reads tag-based files (ds 0)
 - The same code reads both existing records (DS, HG, SL,...) and those that have not been yet implemented
 - Database tells what records are known and how to read them
- Web-based interface for accessing data
- Database accumulates useful queries for future use

What has been done

- Calculation of ozone from raw counts done
- Calculation of effective ozone absorption nearly done
- Caching of results done

Brewer diagnostics


- Using the database approach we can prepare reports about the data that have been collected
 - Identify outliers easily
 - Keep track of SL and other tests
 - Use some intelligence in the diagnostics by analyzing several type of tests/observations together
 - What leads to the HG failure?
 - Did we forget to do HP before HG on a MKIII?

Current database organization

- Data are put into the database tables based on their tag
 - DS table
 - HG table
- Data from all instruments go in one table
 - Instruments can help each other to identify problems: why one Brewer made a good DS at noon last Friday and the other didn't?

Current database organization

- Known tags have their columns of data named
- For unknown tags columns have "field_1" type of names – it is an option.
- Unknown/unrecognized records are put in a separate table and files with those are copied to a separate directory for ease of dealing with them
- Recognized but erroneous (wrong formatting) records are put in normal tables but marked

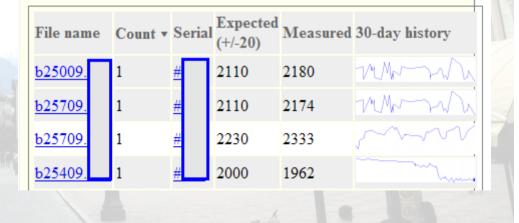
Measurements and tests summary.

_jday	_	seria	l aod	aode	ds	hg	hp ▲	ls	sl	sl	uv	zs
251	#			99	100	24	75			3	2	30
252	#		106		106	32	63			8	5	8
251	#			51	51	35	60			7	16	7
252	#		96		97	33	59			8	4	3
252	#			98	99	31	58			7	7	3
252	#			86	86	35	56			5	8	8
254	#			80	82	30	52			5	6	4
252	#			75	75	29	52			7	3	6
253	#		77		78	32	51			5	5	3
253	#		100		100	27	48			7	14	6
255	#			52	54	32	47		4	7	16	5

Warnings about the number of observations and tests

Fully configurable. All criteria are in the database tables

Helps with scheduling issues for observations.


Questionable Run/Stop results. (0 sec)

Serial	Jday	slit 0	dark rs	dark counts	slit 1	slit 2	slit 3	slit 4	slit 5 🔻	slits 3+5
	2009256	0.9986	1.1667	112 / 96 (0.9M)	0.9984	0.999	0.9472	0.9983	0.8982	0.9994
	2009256	0.9333	1.2143	17 / 14 (1.4M)	0.8997	0.8999	0.9005	0.8992	0.8995	0.8996
	2009256	1.0001	1.1386	115 / 101 (0.9M)	1.0002	0.9996	0.9998	0.9991	0.9964	1.0005
	2009251	1.0031	0.9787	46 / 47 (0.6M)	0.9998	0.9993	0.9997	0.9999	0.9979	1.0006
	2009253	0.9998	3.4082	167 / 49 (1.6M)	0.9994	0.9998	0.9998	0.9978	0.9979	0.9998
	2009255	0.9958	0.8333	10 / 12 (0.6M)	0.9996	0.9994	0.9999	0.9984	0.998	1.0001
	2009257	0.9988	8.5882	146 / 17 (1.6M)	1.0006	0.9992	0.9988	0.9982	0.9984	1.0009
	2009256	0.9983	0.4	2 / 5 (1.5M)	0.9991	0.9996	0.9996	0.9996	0.9985	1.0012
	2009254	0.9969	1	30 / 30 (0.6M)	1.0004	0.9994	1.0002	0.9995	0.9986	0.999
	2000255	1.0001	3 0302	160 / /3 (1 6MD	1 0001	0 0005	1 0001	0 0088	0 0086	1.0001

Measurements and tests summary.

Standard lamp R6 (0 sec)

_jday _seri	al aod aode	ds h	ig hp ls	sl sl	uv	zs
254 #		77 2	28		82	3
253 #		43 2	20	3	71	4
256 #	113	115 2	29	8	24	6
255 #		116 3	34	10	24	6
255 #		68 2	28 30	7	24	3
256 #		68 2	29 30	8	24	4

Standard lamp intensity analysis (0 sec)

Seria	al min	max	filter	fixable	30-day history
#	258237	382429	0		
#	467678	532804	1	yes	
#	212596	578919	1	yes	
#	626126	657883	0		
#	666068	674760	1		\sim
#	739986	766279	0		
#	760440	778696	0		
#	314565	899841	0		

Suspicious HG test results (correlation<0.98 or counts<5000). (0 sec)

Serial	Jday	count	Peak	min.corr.	max.corr. 🔺	30-day history
#	255	4	15865	0	0.9797	\sim
Ħ	252	4	250	0	0.9796	\sim
#	254	1	42469	0.9716	0.9716	
#	250	1	74650	0.9676	0.9676	
#	254	1	168307	0	0	$\overline{}$

AP results for MB Brewer. (1 sec)

Serial	Jday	tl off	tl on	t2 off	t2 on	t3 off ▼	t3 on	HV off	HV on	+15V off	+15V on			-15V off			+24V		+5V sps on	
017	2009250	-30.0	-1.7	-30.0	-0.8	-10.8	-1.6	1408.2	1402.7	15.1	15.0	5.0	5.0	-14.9	-14.9	23.6	23.7	4.9	4.9	-{
051	2009251	21.4	21.2	22.1	21.7	21.6	21.2	1490.2	1457.4	14.8	14.3	4.9	4.8	-15.1	-15.0	24.4	25.2	4.6	4.6	-{
051	2009252	22.6	22.5	22.8	22.7	21.8	21.4	1488.4	1464.7	14.8	14.3	4.8	4.8	-15.1	-15.0	24.4	25.1	4.6	4.6	-{
145	2009258	22.6	22.5	23.0	22.8	22.1	22.1	1260.5	1256.8	14.9	14.8	5.1	5.0	-14.9	-14.9	23.6	23.7	5.0	5.0	-1
<u>165</u>	2009258	22.5	22.5	23.0	23.2	22.1	22.1	1337.1	1337.1	14.8	14.8	5.1	5.1	-14.9	-14.9	23.6	23.9	5.1	5.1	-1
070	2009 not a	a high pr	riority	-10.2	-10.2	23.4	23.4	1446.5	1446.5	14.9	14.9	5.1	5.0	-15.1	-15.1	23.5	23.7	4.9	4.9	-{

Ozone results for good DS obs (std<2.5DU, mu<3) within 3 minutes between 2 Brewers. (2 sec)

Location	Count	Reference 🔺	Brewer	Day	Ozone average for B1	Ozone average for B2	% difference	ETC suspect?
El Ar	8	#145	#	2009255	309.9 +/- 1.5 DU	341.4 +/- 10.5 DU	<u>10.2</u>	
El Ar	16	#145	#	2009255	307.2 +/- 2.6 DU	278.7 +/- 4.9 DU	<u>9.3</u>	yes
El Ar	18	#145	#	2009255	307.2 +/- 2.3 DU	318.8 +/- 6.2 DU	<u>3.8</u>	yes
El Ar	16	#145	#	2009255	308.3 +/- 3.2 DU	314.4 +/- 6.3 DU	<u>2.5</u>	
El Ar	25	#145	#	2009255	307.7 +/- 2.8 DU	308.6 +/- 5.2 DU	1.5	yes
El Ar	20	#145	#	2009255	307.2 +/- 2.1 DU	303.7 +/- 2.1 DU	<u>1.1</u>	
El Ar	25	#145	#	2009255	308.0 +/- 2.6 DU	309.1 +/- 4.6 DU	0.9	
El Ar	17	#145	#	2009255	308.1 +/- 3.1 DU	306.0 +/- 3.0 DU	0.9	
El Ar	6	#145	#	2009255	310.7 +/- 2.3 DU	312.9 +/- 0.6 DU	0.8	
El Ar	22	#145	#	2009255	307.5 +/- 2.3 DU	305.5 +/- 1.8 DU	0.8	
El Ar	14	#145	#	2009255	307.6 +/- 2.6 DU	305.6 +/- 2.3 DU	0.7	
El Ar	17	#145	#	2009255	306.8 +/- 2.7 DU	305.6 +/- 3.3 DU	0.7	
El Ar	19	#145	#	2009255	307.7 +/- 2.2 DU	308.4 +/- 2.9 DU	0.6	yes
El Ar	16	#145	#	2009255	307.7 +/- 2.5 DU	308.6 +/- 2.9 DU	0.6	yes
El Ar	16	#145	#	2009255	306.7 +/- 1.9 DU	306.4 +/- 2.9 DU	0.5	
El Ar	9	#145	#	2009255	308.8 +/- 1.6 DU	308.9 +/- 2.7 DU	0.5	
El Ar	29	#145	#145	2009255	307.9 +/- 2.7 DU	307.9 +/- 2.7 DU	<u>0.0</u>	

Conclusions

- This database approach has been successfully implemented at the Canadian Brewer Network
- Next step is a WWW-accessible version for everybody to use and play

I'd like to acknowledge Tom McElroy, David Wardle, Ken Lamb and many others who provided invaluable input to this project.