Brewer measurements in the visible range ES1207-17392

Henri Diémoz ¹ Kostas Eleftheratos ²

¹ARPA Valle d'Aosta, ²University of Athens

MC and WG meeting, Delft, 2014

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- 2 Algorithm and method
- 3 Radiative transfer models
- 4 Part 1: historical dataset
- 5 Part 2: measurements during the STSM
- 6 NO₂

7 Conclusions

Motivations

AOD measurements by Brewers

open issues

- standard algorithm? (EUBREWNET COST Action)
- calibration?
- radiometric stability?
- temperature dependence?
- internal polarisation?
- straylight (spectral and FOV)?
- pointing accuracy?
- effect of filters?
- ► .

> 60 MKIV Brewers measuring in the visible range (425 – 453

nm)

- easier case than UV
- few works about AOD in the visible (Gröbner et al., 2004)

NO_2 measurements

- recent advances in NO₂ algorithm (Diémoz et al., AMT, 2014) and good average agreement with satellites (~-2.4%)
- but large sensitivity to wavelength misalignments and low correlations with satellites

(日)、(間)、(日)、(日)、(日)、

Academy of Athens

- MKIV Brewer #001 (2004 now)
- Cimel photometer (2008 now)
- large negative NO₂ trends observed by satellites over Athens due to economic recession

・ロト ・個ト ・ヨト ・ヨト

2 Algorithm and method

- 3 Radiative transfer models
- Part 1: historical dataset
- 5 Part 2: measurements during the STSM

6 NO₂

7 Conclusions

Algorithm

- standard data reduction
- spectral attenuation of ND filters taken into account
 - modified fi routine in the visible (standard lamp)
 - continuity between neighbouring measurements with different filters
- Earth-sun distance
- internal polarisation
 - Method 1: theoretical calculations (A. Cede, 2006)
- SZA and AMF calculations as in AERONET
 - Kasten and Young (1989) and Michalsky (1988)
 - refraction included
- same X-secs and trace gases concentrations as in AERONET

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• only simultaneous measurements $(\Delta t < 1 \text{ min})$

- AERONET cloudscreening
- extrapolation of Cimel AODs to Brewer slits (Angstrom law)
 - 6 wavelengths
 - multispectral analysis
- Brewer ETC transferred from Cimel
- 2 parts: historical series (Level 2.0) and STSM (Level 1.5)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- special schedule
 - n2ds and n2s1 measurements
- bform.pl
 - reads B files and output a matrix of data
- Octave/Matlab aod440.m
 - process data in vectorised form

うして ふゆう ふほう ふほう うらつ

2 Algorithm and method

3 Radiative transfer models

4 Part 1: historical dataset

5 Part 2: measurements during the STSM

6 NO₂

Conclusions

▲□> <畳> <目> <目> <目> <<0</p>

Validation

FOV effect calculated to be negligible in visible (as expected from Russel et al., 2004)

æ

Simulation of wavelength shifts

Shift of +4 micrometer steps (about 0.04 nm)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

Simulation of wavelength shifts

nm

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

2 Algorithm and method

- 3 Radiative transfer models
- Part 1: historical dataset
- 5 Part 2: measurements during the STSM

6 NO₂

7 Conclusions

ETC transfer from Cimel

AERONET level 2.0 standard deviation 0.03 (logarithmic ETC)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Effect of internal polarisation

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ のへで

Comparison between long datasets

Slope: 1.006; offset: 0.003; Pearson's correlation coefficient ρ : 0.98

Only 40% within WMO limits (95% needed for traceability)

3.5 3

PCA

Principal Component Analysis (PCA) of $\Delta AOD(\lambda) = AOD_{Brewer}(\lambda) - AOD_{CIMEL}(\lambda)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣��

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Brewers and aerosols Historical series

score 4 2010 2011 2012 2013 score 5 2010 2011 2012 2013 score 6

> (日) (同) (日) (日) э

2012

2013

2011

year

2 Algorithm and method

- 3 Radiative transfer models
- Part 1: historical dataset
- 5 Part 2: measurements during the STSM

6 NO₂

7 Conclusions

Campaign

- May 5 16, 2014
- AOD ranging from 0.05 to 0.4
 - 3 Saharan dust events

Effect of cleaning and sighting

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Temperature dependence

SL results

Negative dependence, not very clear

・ロト ・聞ト ・ヨト ・ヨト

æ

Temperature dependence

Comparison to Cimel

 \sim -0.3%/°C, slightly dependent on wavelength

イロト イポト イヨト イ

∋) ∋

Temperature dependence Comparison to Cimel

 \sim -0.3%/°C, slightly dependent on wavelength

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへの

Differences between temperature dependences determined by SL and Cimel

- expected dependence is very low
- misalignments of FWs at \sim 77 $^{\circ}$ SZA?
- where is internal temperature measured?
- warm-up time
 - would be useful to record warm-up times in Brewer files
- visible light entering from the transparent cover
- is T dependence completely removed from Cimel?

Results of the comparison during the STSM

Slope: 0.993; offset: 0.002; Pearson's correlation coefficient ρ : 0.997

 \sim 90% within WMO limits

ヘロト ヘアト ヘヨト ヘ

3 N 3

2 Algorithm and method

- 3 Radiative transfer models
- 4 Part 1: historical dataset
- 5 Part 2: measurements during the STSM

6 NO₂

Conclusions

vector $\left(\frac{\partial \log I}{\partial \lambda}|_{\lambda_1}, ..., \frac{\partial \log I}{\partial \lambda}|_{\lambda_6}\right)$ included in the fit (Kerr et al., 2002; Cede et al., 2006)

• low 2^{nd} weighting (0.04) "tells" the algorithm to mostly ignore slit 2

うして ふゆう ふほう ふほう うらつ

- absorbs wavelength misalignments
- quality control parameter

Comparison of algorithms

a) Brewer operating software (standard algorithm, no ETC calibration)

b) Diémoz et al., 2014 (constant ETC with bootstrap method)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Comparison of algorithms

c) Diémoz et al., 2014 (piecewise calibration)

d) STSM algorithm (constant ETC with bootstrap method)

Results

- seasonality is opposite than expected
- some instabilities
- better correlation with in-situ concentration measurements with the new algorithm
 - $ho \sim 0.6$
- daily OVP data from TEMIS (screened for max foot distance and cloudiness)
 - good point-to-point correlation $(\rho \sim 0.6)$
 - total VCD from TEMIS much lower (~4 times) than IUP data
 - TEMIS cycle opposite than IUP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

2 Algorithm and method

- 3 Radiative transfer models
- 4 Part 1: historical dataset
- 5 Part 2: measurements during the STSM

6 NO₂

Conclusions

- cleaning of optics and pointing accuracy
- large wavelength dependence on 2^{nd} slit
- temperature dependence of $\sim -0.3\%/^\circ C$
- sl tests inherently limited to measure temperature dependence
- interferences by other absorbers are likely

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

- including derivative of solar spectrum reduces dependence on wavelength
- satellite data from different groups are highly conflicting

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- new acquaintances and scientific collaborations
 - Christos Zerefos
 - Stelios Kazadzis
 - Panos Raptis
- poster at Mediterranean City Conference 2014
- foreseen publications about aerosols and NO₂ by MKIV Brewers
- ... and the Souvlaki, of course!

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Thank you

・ロト ・ 日 ・ ・ 日 ・