Brewer configuration and data processing

Henri Diémoz ¹

¹Environmental Protection Agency of the Aosta Valley (ARPA Valle d'Aosta)

h.diemoz@arpa.vda.it EUBREWNET Training School 2016

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

3 Data upload and levels architecture of EUBREWNET

4 Accessing EUBREWNET products

- B-files are the most complete files were the Brewer data are saved
- D-files are human-readable files
- in recent releases of the Brewer operating software, the content of several small configuration files are copied into the B-file header (just *copied*, if you want to change something you must modify the single config files or use the cf, ic or ll routines)
- configuration is partly duty of the Brewer operator and partly in charge of the calibration service provider

Choose a recent B-file Bdddyy.nnn from your data series and open it with an ASCII editor.

e.g., http://bit.ly/2c4x3ST

Data header

Each B file begins with a data header.

Example	Name	
Version=2	B file version number	
Dh	Header	
25	Day	
11	Month — c	ate in filename and header can differ!
98	Year	
Saskatoon	location name	
52.108	latitude	
106.713	Longitude 🛛 🔶 🗸	Vest positive
3.45	Temperature in volts	
Pr	Pressure header	
1000	Mean Pressure	

Temperature, in volts (TE%) - Read from the PMT thermistor. The temperature in °C is calculated using the equation: $Temp(C) = -33.27 + TE\% \times 18.64$

If you want to change location (e.g., during a campaign), please modify file OP_ST.nnn (can you find it on your PC?)

Data header

Each B file begins with a data header.

Example	Name	
Version=2	B file version number	
Dh	Header	
25	Day	
11	Month	ate in filename and header can differ!
98	Year	
Saskatoon	location name	
52.108	latitude	
106.713	Longitude 🛛 🔶 🗸	Vest positive
3.45	Temperature in volts	
Pr	Pressure header	
1000	Mean Pressure	

Temperature, in volts (TE%) - Read from the PMT thermistor. The temperature in °C is calculated using the equation: $Temp(C) = -33.27 + TE\% \times 18.64$

If you want to change location (e.g., during a campaign), please modify file OP_ST.nnn (can you find it on your PC?)

Data header

Each B file begins with a data header.

Example	Name	
Version=2	B file version number	
Dh	Header	
25	Day	
11	Month	ate in filename and header can differ!
98	Year	
Saskatoon	location name	
52.108	latitude	
106.713	Longitude 🛛 🔶 🗸	Vest positive
3.45	Temperature in volts	
Pr	Pressure header	
1000	Mean Pressure	

Temperature, in volts (TE%) - Read from the PMT thermistor. The temperature in °C is calculated using the equation: $Temp(C) = -33.27 + TE\% \times 18.64$

If you want to change location (e.g., during a campaign), please modify file OP_ST.nnn (can you find it on your PC?)

Then you can have some comment blocks (variables and values used by the software) depending on the version of the operating software...

CO
23:49:43
dh: day header
co
23:49:43
main: version 4.10
07/04/2015 15:00:00
CO
23:49:43
skc: aoo3zs
co
23:49:43
autohg: 0
CO
23:49:43
hifw2: 0
co
23:49:43
attn: 25000 80000
CO
23:49:43
lowds: 1

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

The operating state file controls many of the operating parameters of the Brewer. The left column lists the actual value written in the OP_ST.nnn file. The middle column is the BASIC variable name used in the Brewer software to contain this value, and the right column is a description of the value's meaning.

#	Example	Name (this is a copy of the for addy y thin the
1	0	Ozone temperature coefficient for slit 1 provided by the calibration service
2	3428	Ozone temperature coefficient for slit 2
3	6509	Ozone temperature coefficient for slit 3 / TC from SI corrigon
4	-1.3636	Ozone temperature coefficient for slit 4
5	-2.4043	Ozone temperature coefficient for slit 5
6	.1	Micrometer steps per degree
7	.3407	Ozone on ozone ratio <u>— depends on wa</u> velengths (dift.abs.coeff.)
8	2.35	SO_2 on SO_2 ratio \leftarrow nominally set
9	1.1417	Ozone on SO₂ ratio ← depends on Wavelengths (diff.abs.coeff.)
10	2187	ETC on ozone ratio
11	3340	ETC on SO ₂ ratio
12	.000000042	Dead time (seconds)
13	286	Wavelength calibration step number
14	14	Slit mask motor delay
15	1685	Umkehr offset
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation)
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)
22	2972	Zenith motor steps per revolution
23	mkiv	Brewer model type
24	1	COM port number

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

The operating state file controls many of the operating parameters of the Brewer. The left column lists the actual value written in the OP_ST.nnn file. The middle column is the BASIC variable name used in the Brewer software to contain this value, and the right column is a description of the value's meaning.

#	Example	Name (this is a copy of the for dady y fill the
1	0	Ozone temperature coefficient for slit 1 provided by the calibration service
2	3428	Ozone temperature coefficient for slit 2
3	6509	Ozone temperature coefficient for slit 3 / TC from SI corrigo
4	-1.3636	Ozone temperature coefficient for slit 4
5	-2.4043	Ozone temperature coefficient for slit 5
6	.1	Micrometer steps per degree
7	.3407	Ozone on ozone ratio \leftarrow depends on wavelengths (diff.abs.coeff.)
8	2.35	SO_2 on SO_2 ratio \leftarrow nominally set
9	1.1417	Ozone on SO ₂ ratio \leftarrow depends on Wevelengths (diff. abs. coeff.)
10	2187	ETC on ozone ratio
11	3340	ETC on SO ₂ ratio
12	.000000042	Dead time (seconds)
13	286	Wavelength calibration step number
14	14	Slit mask motor delay
15	1685	Umkehr offset
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation)
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)
22	2972	Zenith motor steps per revolution
23	mkiv	Brewer model type
24	1	COM port number

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

The operating state file controls many of the operating parameters of the Brewer. The left column lists the actual value written in the OP_ST.nnn file. The middle column is the BASIC variable name used in the Brewer software to contain this value, and the right column is a description of the value's meaning.

#	Example	Name (this is a copy of the for dady y fill the
1	0	Ozone temperature coefficient for slit 1 provided by the calibration service
2	3428	Ozone temperature coefficient for slit 2
3	6509	Ozone temperature coefficient for slit 3 / TC from SL corrige
4	-1.3636	Ozone temperature coefficient for slit 4
5	-2.4043	Ozone temperature coefficient for slit 5
6	.1	Micrometer steps per degree
7	.3407	Ozone on ozone ratio <u>— depends on wa</u> velengths (diff.abs.coeff.)
8	2.35	SO_2 on SO_2 ratio \leftarrow nominally set
9	1.1417	Ozone on SO ₂ ratio \leftarrow depends on Wevelengths (diff. abs. coeff.)
10	2187	ETC on ozone ratio
11	3340	ETC on SO ₂ ratio
12	.000000042	Dead time (seconds)
13	286	Wavelength calibration step number
14	14	Slit mask motor delay
15	1685	Umkehr offset
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation)
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)
22	2972	Zenith motor steps per revolution
23	mkiv	Brewer model type
24	1	COM port number

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

#	Example	Name (this is a copy of the for dady y fill the
1	0	Ozone temperature coefficient for slit 1 provided by the calibration service
2	3428	Ozone temperature coefficient for slit 2
3	6509	Ozone temperature coefficient for slit 3 / TC from SL corrige
4	-1.3636	Ozone temperature coefficient for slit 4
5	-2.4043	Ozone temperature coefficient for slit 5
6	.1	Micrometer steps per degree
7	.3407	Ozone on ozone ratio \leftarrow depends, on wavelengths (diff.abs.coeff.)
8	2.35	SO_2 on SO_2 ratio \leftarrow nominally set
9	1.1417	Ozone on SO ₂ ratio — depends on wavelengths (diff.abs.coeff.)
10	2187	ETC on ozone ratio
11	3340	ETC on SO ₂ ratio
12	.000000042	Dead time (seconds)
13	286	Wavelength calibration step number
14	14	Slit mask motor delay
15	1685	Umkehr offset
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation)
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)
22	2972	Zenith motor steps per revolution
23	mkiv	Brewer model type
24	1	COM port number

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

The operating state file controls many of the operating parameters of the Brewer. The left column lists the actual value written in the OP_ST.nnn file. The middle column is the BASIC variable name used in the Brewer software to contain this value, and the right column is a description of the value's meaning.

#	Example	Name this is a copy of the for dady y min me
1	0	Ozone temperature coefficient for slit 1 provided by the calibration service
2	3428	Ozone temperature coefficient for slit 2
3	6509	Ozone temperature coefficient for slit 3 / TC from SL corrige
4	-1.3636	Ozone temperature coefficient for slit 4 TC TOTTI SE SETTES
5	-2.4043	Ozone temperature coefficient for slit 5
6	.1	Micrometer steps per degree
7	.3407	Ozone on ozone ratio <u>— depends, on wavelengths</u> (diff.abs.coeff.)
8	2.35	SO_2 on SO_2 ratio \leftarrow nominally set
9	1.1417	Ozone on SO₂ ratio ← depends on wavelengths (diff.abs.coeff.)
10	2187	ETC on ozone ratio
11	3340	ETC on SO ₂ ratio
12	.000000042	Dead time (seconds)
13	286	Wavelength calibration step number
14	14	Slit mask motor delay
15	1685	Umkehr offset
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation)
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)
22	2972	Zenith motor steps per revolution
23	mkiv	Brewer model type
24	1	COM port number

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

The operating state file controls many of the operating parameters of the Brewer. The left column lists the actual value written in the OP_ST.nnn file. The middle column is the BASIC variable name used in the Brewer software to contain this value, and the right column is a description of the value's meaning.

#	Example	Name this is a copy of the for dady y min me
1	0	Ozone temperature coefficient for slit 1 provided by the calibration service
2	3428	Ozone temperature coefficient for slit 2
3	6509	Ozone temperature coefficient for slit 3 / TC from SL corrigo
4	-1.3636	Ozone temperature coefficient for slit 4 C TC HOM SL SETES
5	-2.4043	Ozone temperature coefficient for slit 5
6	.1	Micrometer steps per degree
7	.3407	Ozone on ozone ratio \leftarrow depends on wavelengths (diff.abs.coeff.)
8	2.35	SO_2 on SO_2 ratio \leftarrow nominally set
9	1.1417	Ozone on SO₂ ratio ← depends on wavelengths (diff.abs.coeff.)
10	2187	ETC on ozone ratio
11	3340	ETC on SO ₂ ratio
12	.000000042	Dead time (seconds)
13	286	Wavelength calibration step number
14	14	Slit mask motor delay
15	1685	Umkehr offset
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation)
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)
22	2972	Zenith motor steps per revolution
23	mkiv	Brewer model type
24	1	COM port number

Instruments constants

Example

$$O_3 = rac{MS_9 - 2187}{0.3407 \cdot \mu}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

 MS_9 is the linear combination of *corrected* countrates using the ozone coefficients (double ratio)

 μ is the airmass factor

 O_3 must be divided by 10 to get value in DU

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

#	Example	Name	
1	0	Ozone temperature coefficient for slit 1	
2	3428	Ozone temperature coefficient for slit 2	
3	6509	Ozone temperature coefficient for slit 3	
4	-1.3636	Ozone temperature coefficient for slit 4	
5	-2.4043	Ozone temperature coefficient for slit 5	
6	.1	Micrometer steps per degree	
7	.3407	Ozone on ozone ratio	
8	2.35	SO ₂ on SO ₂ ratio	
9	1.1417	Ozone on SO ₂ ratio	
10	2187	ETC on ozone ratio	
11	3340	ETC on SO ₂ ratio	
12	.000000042	Dead time (seconds)	
13	286	Wavelength calibration step number \leftarrow from sun	
14	14	Slit mask motor delay	
15	1685	Umkehr offset	
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)	
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)	
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation)	
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)	
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)	
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)	
22	2972	Zenith motor steps per revolution	
23	mkiv	Brewer model type	
24	1	COM port number	

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

#	Example	Name		
1	0	Ozone temperature coefficient for slit 1		
2	3428	Ozone temperature coefficient for slit 2		
3	6509	Ozone temperature coefficient for slit 3		
4	-1.3636	Ozone temperature coefficient for slit 4		
5	-2.4043	Ozone temperature coefficient for slit 5		
6	.1	Micrometer steps per degree		
7	.3407	Ozone on ozone ratio		
8	2.35	SO ₂ on SO ₂ ratio		
9	1.1417	Ozone on SO ₂ ratio		
10	2187	ETC on ozone ratio		
11	3340	ETC on SO ₂ ratio		
12	.000000042	Dead time (seconds)		
13	286	Wavelength calibration step number \leftarrow trom sun	scan	(SC) test
14	14	Slit mask motor delay		(
15	1685	Umkehr offset		
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)		
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)		
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation)		
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)		
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)		
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)		
22	2972	Zenith motor steps per revolution		
23	mkiv	Brewer model type		
24	1	COM port number		

Brewer configuration files $_{\text{SC test}}$

- search for zero ozone sensitivity for slight wavelengths misalignments
- shape comes from Fraunhofer lines and ozone X-secs
- therefore it represents an absolute wavelengths reference available everywhere

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

#	Example	Name
1	0	Ozone temperature coefficient for slit 1
2	3428	Ozone temperature coefficient for slit 2
3	6509	Ozone temperature coefficient for slit 3
4	-1.3636	Ozone temperature coefficient for slit 4
5	-2.4043	Ozone temperature coefficient for slit 5
6	.1	Micrometer steps per degree
7	.3407	Ozone on ozone ratio
8	2.35	SO ₂ on SO ₂ ratio
9	1.1417	Ozone on SO ₂ ratio
10	2187	ETC on ozone ratio
11	3340	ETC on SO ₂ ratio
12	.000000042	Dead time (seconds)
13	286	Wavelength calibration step number
14	14	Slit mask motor delay
15	1685	Umkehr offset \leftarrow Umkehr has 5 wavelengths more
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation) volume and spectral for $\Lambda \cap \Gamma$
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)
22	2972	Zenith motor steps per revolution
23	mkiv	Brewer model type
24	1	COM port number

Instruments constants

ICFJJJYY.NNN - INSTRUMENT CONSTANTS

#	Example	Name
1	0	Ozone temperature coefficient for slit 1
2	3428	Ozone temperature coefficient for slit 2
3	6509	Ozone temperature coefficient for slit 3
4	-1.3636	Ozone temperature coefficient for slit 4
5	-2.4043	Ozone temperature coefficient for slit 5
6	.1	Micrometer steps per degree
7	.3407	Ozone on ozone ratio
8	2.35	SO ₂ on SO ₂ ratio
9	1.1417	Ozone on SO ₂ ratio
10	2187	ETC on ozone ratio
11	3340	ETC on SO ₂ ratio
12	.000000042	Dead time (seconds)
13	286	Wavelength calibration step number
14	14	Slit mask motor delay
15	1685	Umkehr offset
16	0	Neutral density of filter 0 (divide by 10 ⁴ to get attenuation)
17	4440	Neutral density of filter 1 (divide by 10 ⁴ to get attenuation)
18	10320	Neutral density of filter 2 (divide by 10 ⁴ to get attenuation) you need spectral for AOD
19	14120	Neutral density of filter 3 (divide by 10 ⁴ to get attenuation)
20	21230	Neutral density of filter 4 (divide by 10 ⁴ to get attenuation)
21	25800	Neutral density of filter 5 (divide by 10 ⁴ to get attenuation)
22	2972	Zenith motor steps per revolution
23	mkiv	Brewer model type
24	1	COM port number

Instruments constants

25	0	ozone temperature coefficient for mercury exit slit	
26	0	NO ₂ temperature coefficient for mercury exit slit	
27	0	NO ₂ temperature coefficient for slit 1	
28	0	NO ₂ temperature coefficient for slit 2	ers
29	0	NO ₂ temperature coefficient for slit 3	
30	0	NO ₂ temperature coefficient for slit 4	
31	0	NO ₂ temperature coefficient for slit 5	
32	1	ozone micrometer offset	
33	0	Not used.	
34	242	Ozone filter wheel #3 position	
35	-3	NO ₂ absorption coefficient	
36	765	NO ₂ direct sun ETC	
37	740	NO ₂ zenith sky ETC	
38	2511	NO ₂ micrometer offset	
39	178	NO ₂ filter wheel #3 position	
40	2510	Ozone/ NO ₂ mode change distance for micrometer	
41	0	Not used.	
42	0	Not used.	
43	2669	Micrometer zero position	
44	250	number of motor steps to open iris	

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Instruments constants

25	0	ozone temperature coefficient for mercury exit slit	
26	0	NO ₂ temperature coefficient for mercury exit slit	
27	0	NO ₂ temperature coefficient for slit 1	
28	0	NO ₂ temperature coefficient for slit 2 MkIV Brew	ers
29	0	NO ₂ temperature coefficient for slit 3	
30	0	NO ₂ temperature coefficient for slit 4	
31	0	NO ₂ temperature coefficient for slit 5	
32	1	ozone micrometer offset	
33	0	Not used.	
34	242	Ozone filter wheel #3 position	
35	-3	NO ₂ absorption coefficient	
36	765	NO ₂ direct sun ETC / don't truct themal	
37	740	NO ₂ zenith sky ETC	
38	2511	NO ₂ micrometer offset	
39	178	NO ₂ filter wheel #3 position	
40	2510	Ozone/ NO ₂ mode change distance for micrometer	
41	0	Not used.	
42	0	Not used.	
43	2669	Micrometer zero position	
44	250	number of motor steps to open iris	

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Instruments constants

25	0	ozone temperature coefficient for mercury exit slit	
26	0	NO ₂ temperature coefficient for mercury exit slit	
27	0	NO ₂ temperature coefficient for slit 1	
28	0	NO ₂ temperature coefficient for slit 2 MkIV Brewers	
29	0	NO ₂ temperature coefficient for slit 3	
30	0	NO ₂ temperature coefficient for slit 4	
31	0	NO ₂ temperature coefficient for slit 5	
32	1	ozone micrometer offset	
33	0	Not used.	
34	242	Ozone filter wheel #3 position	
35	-3	NO ₂ absorption coefficient	
36	765	NO ₂ direct sun ETC	
37	740	NO_2 zenith sky ETC \leftarrow dom t trust them:	
38	2511	NO ₂ micrometer offset	
39	178	NO ₂ filter wheel #3 position	
40	2510	Ozone/ NO ₂ mode change distance for micrometer	
41	0	Not used.	
42	0	Not used.	
43	2669	Micrometer zero position	ns
44	250	number of motor steps to open iris	

Instruments constants

45	.2	Computer buffer delay (larger numbers for faster computers)]		
46	64	NO ₂ filter wheel #1 position]		
47	256	Ozone filterwheel #1 position	1		
48	0	Filterwheel #2 position	1		
49	64	UV filterwheel #2 position]		
50	0	Steps from zenith sensor to the hard stop	1		
51	2232	Zenith UV position	to l	JV por	rt
52	June 1/99	Release Date 🥢 when was your Brewer calibra	ted	last tir	ne?

Instruments constants

45	.2	Computer buffer delay (larger numbers for faster computers)	
46	64	NO ₂ filter wheel #1 position	
47	256	Ozone filterwheel #1 position	
48	0	Filterwheel #2 position	
49	64	UV filterwheel #2 position	
50	0	Steps from zenith sensor to the hard stop	
51	2232	Zenith UV position	to UV port
52	June 1/99	Release Date when was your Brewer calibra	ted last time?

Dispersion constants

DCFJJJ.NNN - DISPERSION CONSTANTS

#	Example	Name
1	2841.969	intercept for slit 1
2	0.07708953	slope for slit 1
3	-7.53908e-07	quadratic for slit 1
4	2881.748	intercept for slit 2
5	0.07640633	slope for slit 2
6	-7.774226e-07	quadratic for slit 2
7	2918.904	intercept for slit 3
8	0.07555325	slope for slit 3
9	-7.810584e-07	quadratic for slit 3
10	2954.205	intercept for slit 4
11	0.07485946	slope for slit 4
12	-8.023931e-07	quadratic for slit 4
13	2990.217	intercept for slit 5
14	0.0732299	slope for slit 5
15	-7.105979e-07	quadratic for slit 5
16	2808.557	intercept for mercury exit slit
17	0.07786144	slope for mercury exit slit
18	-7.580347e-07	quadratic for mercury exit slit
19	4262.953	NO2 intercept for slit 1
20	0.1156343	NO ₂ slope for slit 1
21	-1.130862e-06	NO ₂ quadratic for slit 1
22	4322.622	NO ₂ intercept for slit 2
23	0.1146095	NO ₂ slope for slit 2
24	-1.166134e-06	NO ₂ guadratic for slit 2
25	4378.356	NO ₂ intercept for slit 3
26	0.1133299	NO ₂ slope for slit 3
27	-1.171588e-06	NO ₂ quadratic for slit 3
28	4431.307	NO2 intercept for slit 4
29	0.1122892	NO ₂ slope for slit 4
30	-1.20359e-06	NO ₂ quadratic for slit 4
31	4485.325	NO ₂ intercept for slit 5
32	0.1098448	NO ₂ slope for slit 5
33	-1.065897e-06	NO ₂ quadratic for slit 5
34	4212.835	NO ₂ intercept for mercury exit slit
35	0.1167922	NO2 slope for mercury exit slit
36	-1.137052e-06	NO ₂ quadratic for mercury exit slit

← this is a copy of the DCFdddyy.nnn file

 $3 \times 6 \times 2$ coefficients

- $3 = 2^{nd}$ degree polynomial
- 6 = number of slits
- $2 = \text{modes}(O_3 \text{ and } NO_2)$

Dispersion test

Dispersion relation (wavelength vs motor steps) is retrieved by fitting know wavelengths of emission lines from several lamps to the peaks positions (microstep) measured by the Brewer

ZSFJJJYY.NNN (ZSFVAL)- ZENITH SKY CONSTANTS

Zenith Sky constants are used in the ZS ozone calculations, and are Location/Brewer dependent. They are derived by making a comparison of near simultaneous DS and ZS measurements over a wide range of mu and ozone values (usually many months).

The values supplied in ZSFVAL.nnn are for a Brewer #035 operating in Toronto, Canada, and should produce results which are accurate to within 5% or so. These values can be used until a new set can be derived for the new site.

Example	Name
-0.006400	Coefficient #1
-0.019680	Coefficient #2
0.016540	Coefficient #3
0.123076	Coefficient #4
0.281095	Coefficient #5
-0.060974	Coefficient #6
-0.486491	Coefficient #7
0.458119	Coefficient #8
-0.044107	Coefficient #9

 $\leftarrow \text{ this is a copy of} \\ \text{the ZSFdddyy.nnn file} \\$

うして ふゆう ふほう ふほう うらう

9 empirical coefficients:

 $F - F_0 = a + b\mu + c\mu^2 + dX + eX\mu + fX\mu^2 + gX^2 + hX^2\mu + kX^2\mu^2$

See my poster at QOS for a different formulation

Operating state file

OP_ST.NNN - OPERATING STATE FILE

	Sample	SW	Explanation
1		Variable	
1	162	NO\$	Brewer ID number
2	C:\bdata\	DD\$	Data Directory
3	icf25899	ICF\$	instrument constants file
4	zsf32098	ZSF\$	zenith sky coefficients file
5	dcf14799	DCF\$	dispersion constants file
6	uvr09899	UVR\$	UV response file
7	18	DA\$	month Brewer was last in operation
8	09	MO\$	Month Brewer was last in operation
9	99	YE\$	Year Brewer was last in operation
10	Saskatoon	LO\$	Location of Brewer instrument
11	52.108	L1\$	Latitude of instrument
12	106.713	L2\$	Longitude of instrument
13	960	L3\$	Average climatic station pressure (millibars)
14	3.54	TE\$	Voltage representation of Brewer temperature
15	810	NC%	Azimuth north correction (from cighting (SI) toot
16	-12	HC%	Zenith horizon correction
17	14666	SR%	Azimuth steps per revolution
18	1	Q1%	Zenith drive motor
19	1	Q2%	Azimuth drive motor
20	1	Q3%	Iris drive motor YES/NO
21	1	Q4%	Filterwheel #1 drive motor
22	1	Q5%	Filterwheel #2 drive motor
23	0	Q6%	Clock board

Operating state file

OP_ST.NNN - OPERATING STATE FILE

	Sample	SW	Explanation
1		Variable	
1	162	NO\$	Brewer ID number
2	C:\bdata\	DD\$	Data Directory
3	icf25899	ICF\$	instrument constants file
4	zsf32098	ZSF\$	zenith sky coefficients file
5	dcf14799	DCF\$	dispersion constants file
6	uvr09899	UVR\$	UV response file
7	18	DA\$	month Brewer was last in operation
8	09	MO\$	Month Brewer was last in operation
9	99	YE\$	Year Brewer was last in operation
10	Saskatoon	LO\$	Location of Brewer instrument
11	52.108	L1\$	Latitude of instrument
12	106.713	L2\$	Longitude of instrument
13	960	L3\$	Average climatic station pressure (millibars)
14	3.54	TE\$	Voltage representation of Brewer temperature
15	810	NC%	Azimuth north correction (from sighting (SI) toot
16	-12	HC%	Zenith horizon correction
17	14666	SR%	Azimuth steps per revolution \leftarrow from SR test
18	1	Q1%	Zenith drive motor
19	1	Q2%	Azimuth drive motor
20	1	Q3%	Iris drive motor YFS/NO
21	1	Q4%	Filterwheel #1 drive motor
22	1	Q5%	Filterwheel #2 drive motor
23	0	Q6%	Clock board

Operating state file

OP_ST.NNN - OPERATING STATE FILE

	Sample	SW	Explanation
1		Variable	
1	162	NO\$	Brewer ID number
2	C:\bdata\	DD\$	Data Directory
3	icf25899	ICF\$	instrument constants file
4	zsf32098	ZSF\$	zenith sky coefficients file
5	dcf14799	DCF\$	dispersion constants file
6	uvr09899	UVR\$	UV response file
7	18	DA\$	month Brewer was last in operation
8	09	MO\$	Month Brewer was last in operation
9	99	YE\$	Year Brewer was last in operation
10	Saskatoon	LO\$	Location of Brewer instrument
11	52.108	L1\$	Latitude of instrument
12	106.713	L2\$	Longitude of instrument
13	960	L3\$	Average climatic station pressure (millibars)
14	3.54	TE\$	Voltage representation of Brewer temperature
15	810	NC%	Azimuth north correction (from cighting (SI) toot
16	-12	HC%	Zenith horizon correction
17	14666	SR%	Azimuth steps per revolution \leftarrow from SR test
18	1	Q1%	Zenith drive motor
19	1	Q2%	Azimuth drive motor
20	1	Q3%	Iris drive motor YES / NO
21	1	Q4%	Filterwheel #1 drive motor
22	1	Q5%	Filterwheel #2 drive motor
23	0	Q6%	Clock board

Brewer configuration files Operating state file

24	1	Q7%	A/D board
25	1	Q8%	UVB port
26	1	Q9%	Filterwheel #3 drive motor
27	1	Q10%	New or old temperature circuit. Set to 1 for a new
			temperature circuit and 0 for an old circuit.
28	0	Q11%	Second film polarizer
29	0	Q12%	Set to 1 to enable NOBREW operation
30	0	Q13%	Wide HG slit present. Always set this to 1.
31	0	Q14%	New Brewer electronics board
32	0	Q15%	Humidity Sensor
33	Skc	DI\$	Schedule or menu indicator
34	o3	MDD\$	Mode
35	Skd1	SK\$	Schedule name

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Brewer configuration files UV responsivity

UVRJJJYY.NNN

First column: wavelength in Angstrom. Second column is responsivity in counts/mW/m²/nm.

This is a copy of the UVRdddyy.nnn file

Operating schedule

schedule pdn2fmfmfmfmfmfmpf99 pdo3aphgslslsln2slslsldtrso3pf - 94 pdo3apzszpzszpzszpzszpzszpzszppf99 -80 pdo3apdszszpdszszpdszszpdszszpdszszpb1uvhqpf99 -60 pdo3apdszszpdszszpdszszpdszszpdszszppf99 pdo3apdszszpdszszpdszszpdszszpdszszpb1uvhgpf99 pdo3apdszszpdszszpdszszpdszszpdszszppf99 60 pdo3apdszszpdszszpdszszpdszszpdszszpb1uvhgpf99 pdo3apzszpzszpzszpzszpzszpzszppf99 94 pdo3appzzehgn2fmfmfmfmfmfmpf 110 pdn2fmfmfmfmfmfmf<u>mpf99</u> 180 aoo3zs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Brewer configuration files SL test

It is enough? No, we still need an estimate of the SL ratios at the time of calibration, so that variations of the ETC can be tracked

 $R6 - R6_{cal} = ETC - ETC_{cal}$ (N.B. differences are ratios in log space!)

SL ratios at the time of calibration are reported in the calibration certificate

Brewer configuration files SL test

$R6 - R6_{cal} = ETC - ETC_{cal}$

R6 and R5 are noisy... Some kind of moving average must be used to track only real ETC changes

・ロト ・得ト ・ヨト ・ヨト

-

3 Data upload and levels architecture of EUBREWNET

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

All relevant variables for each Brewer are saved in EUBREWNET database (192 variables!).

EUBREWNET supports version control (history of changes)

http://rbcce.aemet.es/dokuwiki/doku.php?id=devel: eubrewnetconfiguration

How to upload them to EUBREWNET?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- ICF files are automatically uploaded if they are in the folder selected for data sending by the client software
- Alternatively, you can manually upload the file (ICF or O3Brewer) from your local PC or fill a form with the necessary data by hand

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Reference R5 and R6 (at time of calibration) have to be written by hand

Available configurations

Brewerid Date			New		Modify	Download		
66 2016-09-01		Add new Config	uration Mo	dify Configuration	Download Configs			
Available OZONE Configurations								
2006-07-10	2007-04-23	2009-07-09	2010-10-27	2011-08-03	2012-08-01	2013-05-30		
2015-07-17								
Field			Value					
date			2015-07-17					
version			1.0					
operator			hdiemoz					
modify_date			2016-02-25 08	:41:56				
id			970					
comments			None					

http://rbcce.aemet.es/eubrewnet/configuration/list/OZONE

If you have no user, try with azores (pw azowork)

atura Algorithm	Instrumental Constants	Jadan III.			
S Setup	instrumental constants				
	ETC 03	O3 Ratio on O3	R6 Reference	SL test O3 correction and recalculation	
Dzone	3095.0	0.3399	1835.0		
	ETC SO2	O3 Ratio on SO2	SO2 Ratio on SO2	R5 Reference	
502	3160.0	1.144	2.35	3410.0	
Filtore	O3 DS	Max STD	MU DS,ZS	Value	
riiters	E	2.5	Z	3.5	
Straylight	Α	В			
A*OSC^B)	0.0	0.0			
netromental	Deadtime	WL cal step number	GI calibration factor		
Instrumental	3.1e-08	930			

http://rbcce.aemet.es/eubrewnet/configuration/upgrade/OZONE? Brewer=66&Date=2015-07-17&Mod=1

(ロ) (型) (E) (E) (E) (O)

Configuration Upload

Configuration and Actions								
Current User	Brewerid	Date	Modify Date	Operator	Operative Level 2			
hdiemoz	66	2015-07-17	2016-02-25 08:41	hdiemoz				
Upload ICF	Upload O3Brewer	Upload ZSF		Go Back	Submit Changes			

Remember to submit changes!

It the "SL test O3 correction and recalculation" flag is set, then all data in between two configuration dates will be reprocessed!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Check you config history: http://rbcce.aemet.es/eubrewnet/configuration/history

3 Data upload and levels architecture of EUBREWNET

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Data upload, data processing and levels architecture of EUBREWNET

Cape Ven

EUBREWNET! How does it work?

The Python client software sends all files to the EUBREWNET server

henri@virtBrewer:~/Programmi/eubrewnet/client_python/source\$ ls								
alive.py	configure.py	log.py	refreshdb.py	refresh.py	util.pyc	xmlrpcproxy.pyc		
client.ini	download.py	log.pyc	refreshdb.pyc	util.py	xmlrpcproxy.py			
henri@virtBrewer:~/Programmi/eubrewnet/client_python/source\$								

Example of entry in crontab:

*/15 * * * * cd /home/henri/Programmi/eubrewnet/client_python/source && python refresh.py >/dev/null 2>&1

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Up to now, raw data are processed following the classical Brewer algorithm (Tomi's presentation).

The raw data and the results are organised using quality levels:

Level 0

 O_3 and SO_2 coming from the direct sun measures from the Brewer

- values for O₃ and SO₂ extracted from the parsed B files without processing
- the constants used in the process come from the B-file inst section

うして ふゆう ふほう ふほう うらつ

Level 1

 O_3 and SO_2 recalculations with the standard algorithm from the direct sun measures and applying a set of constants verified by an operator

- the calculations use a EUBREWNET module implementing the standard algorithm
- the configuration constants and values used in the process come from the configurations uploaded to EUBREWNET and validated by the operators
- only latitude, longitude and pressure are taken from the inst section of B-files

うして ふゆう ふほう ふほう うらつ

Data upload and levels architecture of EUBREWNET

Level 1.5 REALTIME OBSERVATIONS

They are Level 1.0 observations with filters and corrections. Filters:

- ozone standard deviation during a measurement (thresholds set in config, default std: 2.5 DU)
- ozone slant column / air mass (set in config, default airmass: 3.5)
- measurements must have valid hg (step change lees than 2) before and after
- minimum value: 100 DU
- maximum value: 500 DU

Corrections:

- standard lamp correction
- filter correction: ETC filter dependent correction (has to be provided in config)
- stray light correction (two parameters have to be set in config)

Level 2

Observations validated with a posterior calibration. Only with a subsequent calibration/comparison the ETC correction based on the standard lamp can be validated.

The Level 2 data are produced when the operator activates the verification flag and validates (assign to level 2) the observations data between the current calibration and the previous verified one.

3 Data upload and levels architecture of EUBREWNET

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Accessing EUBREWNET products

You can choose your favourite method to download ozone, UV or AOD products from EUBREWNET:

- as text or zip files (daily, monthly or yearly product) from each Brewer page
 - e.g., http://rbcce.aemet.es/eubrewnet/brewer/view/66
- With a browser (or any script accessing the Internet) using access functions
 - e.g., http://rbcce.aemet.es/eubrewnet/data/get/DS? brewerid=157&date=2015-01-01
- using Python and the brewerjson module
 - more info at

http://rbcce.aemet.es/dokuwiki/doku.php?id=devel: brewerpythonmodule